ELECTROCHEMICAL DETERMINATION OF ADENINE BY BIMETAL DOPED SILICATE MATRIX

V. L. Chandraboss*

Department of Chemistry, Bharath Institute of Higher Education and Research, Bharath University, Chennai 600073, Tamilnadu, India. *Corresponding Author: <u>chandraboss08@gmail.com</u>

ABSTRACT

Zn-Au@SiO₂was synthesized by simple and cost effective sol-gel method. The obtained Zn-Au@SiO₂was examined by high resolution-scanning electron microscopy (HR-SEM) with energy dispersive X-ray (EDX) analysis. Zn-Au@SiO₂was modified by glassy carbon electrode (GCE) can be used as efficient electrochemical sensing of guanine. The role of Au, Si and Zn in the electrochemical sensing has been discussed.

Keywords: Zinc oxide; Nanocomposite; Adenine; Cyclic voltammetry; Sensing.

1. INTRODUCTION

Carbon materials touch every part of our daily lives. The advantage of demanding properties of novel carbon derived materials to develop a myriad of new applications for chemical sensing. A range of materials including platinum, gold, and various forms of carbon have thus been found useful for electrochemical detection [1-5].

Drug and biomolecule investigation have played a very important role in drug quality control, and such has been found to have a enormous impact on public health. Therefore, a simple, selective, fast, sensitive and accurate way for the determination of active biological and pharmaceutical compounds is very important [6–9].Zinc oxide nanoparticles (ZnO NPs) represent a recent topic of research due to their large excitation energy, wide band gap and high surface-to-volume ratio. There is increased demand for the usage of ZnO NPs in many devices such as biosensors, solar cells, batteries, photodetectors and nanolasers [10–18].

Adenine is a component of DNA, and most of the recent electroanalytical protocols for DNA detection are based on this electroactive species [18].Recently, due to the merits of strong adsorption ability (isoelectric point of about 9.5) and fast electron transfer kinetics, ZnO is also considered as a very promising sensing material with high catalytic efficiency [19–22]. ZnO NPs are also a definite asset towards the development of electrochemical sensing platforms for single-molecule detection [23–27]. However, guanine exhibit slow direct electron transfer and irreversible absorption on the electrode surface, which lead to low sensitivity for DNA detection. Over the past years, significant efforts have been paid on the development of chemical modified electrodes to improve the electrochemical sensing performance for guanine [28–33].

Here, in this paper Zn-Au@SiO₂was synthesized by a simple and cost effective sol-gel method. The obtained material was characterized by HR-SEM with EDX analysis. Zn-Au@SiO₂modified GCE was used on electrochemical sensing of guanine and the results are discussed.

2. EXPERIMENTAL SECTION

2.1. Chemicals

Chloro auric acid, Zinc acetate dihydrate, Tetraethyl orthosilicate, anhydrous ethanol (C_2H_5OH) , sodium hydroxide (NaOH), potassium chloride (KCl) and guanine $(C_5H_5N_5O)$ were the guaranteed reagents of Sigma Aldrich and used as such. Conductivity water is used as a solvent throughout the experiment.

2.2. Characterization methods

High-resolution scanning electron microscopy and elementary dispersive X-ray analysis experiments were carried out on a FEI Quanta FEG 200 instrument with EDX analyzer facility at 25 °C. The sample was prepared by placing a small quantity of prepared nanocomposites on a carbon coated copper grid and allowing the solvent to evaporate.

2.3. Electrochemical Investigations

Cyclic voltammograms (CVs) were performed by using a CHI 604C electrochemical analyzer (CHI Instruments Inc., Austin, TX). A conventional three-electrode cell was used, including an Ag/AgCl (saturated KCl) electrode as the reference electrode, a Pt wire served as a counter electrode, and glassy carbon coated with synthesized Zn-Au@SiO₂as a working electrode. GCE was sequentially polished before the experiments with 1.5, 0.35mm alpha alumina powder and 0.08 mm gamma alumina powder/water slurry on microcloths pads. To fabricate a working electrode, 0.8 g of the prepared Zn-Au@SiO₂was suspended in 4 mL of conductivity water and sonicated for 60 min. 5 drops of this solution was pipetted onto the surface of the GCE and dried for 20 min at room temperature. GCE was coated with 6% Nafion 118 solution was then placed onto the GCE and dried for 15 min to form a membrane on the top. The Nafion membrane helps the loaded material to stick on the electrode surface. All electrocatalytic solutions were deaerated with high purity nitrogen before the CV measurements.

3. RESULTS AND DISCUSSION

3.1. Surface morphology and elemental analysis

Figure. 1a. shows the HR-SEM image of Zn-Au@SiO₂nanoparticles. The HR-SEM images revealed that individual spherical size particles were composed by an aggregation. Au/Zn@SiZn-Au@SiO₂O₂shows the average particle size of 50 nm. Nanoparticles smaller than 50 nm have markedly altered properties and are often referred to as "quantum dots" because of their size controls the separation (or quantization) of energy level within them [34]. EDX analysis confirms Zn, Au, Si and O are present in Zn-Au@SiO₂. (Figure. 1b)

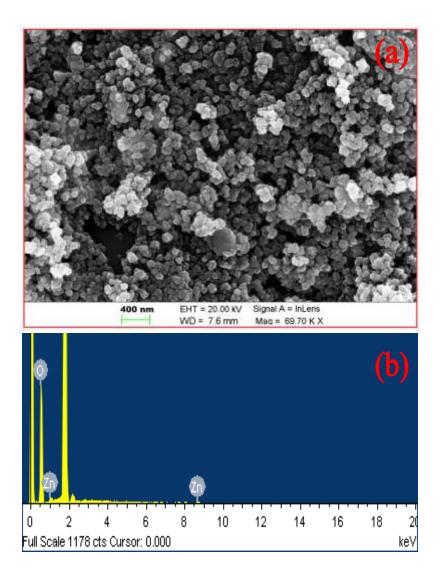


Figure. 1 (a) SEM image of Zn-Au@SiO₂nanoparticles and (b) EDX analysis of Zn-Au@SiO₂.

3.2. Cyclic voltammetry studies

Figure. 2 shows the modified electrodes in 0.2 M KCl as a supporting electrolyte. Figure2a shows uncoated GCE in 0.2M KCl, Figure 2b shows SiO₂ coated GCE in 0.2 M KCl with 4 mL of 0.002 M Adenine/NaOH solution and Figure 2c shows Zn-Au@SiO₂coated GCE in 0.2 M KCl with 4 mL of 0.002 M Adenine/NaOH solution. Figure 2d shows the CVs of different modified electrodes in 0.2 M KCl as a supporting electrolyte at a scan rate of 0.02 V/s. This figure represents CVs of uncoated GCE in 0.2M KCl (green curve), SiO₂ coated GCE in 0.1 M KCl with 2 mL of 0.002M Adenine/NaOH (blue curve) and Au/Zn@SiO₂coated GCE in 0.1 M KCl with 2 mL of 0.002M AdenineNaOH (red curve). The AEp value observed of Zn-Au@SiO₂/GCE (15 mV) reveals the kinetic hindrance exerted on the electron transfer process. Red curve shows the sensing of guanine by the Zn-Au@SiO₂/GCE electrode as an enhanced anodic and cathodic current and the (Epa) peak potential of 0.547 V and 0.245 V. Where as in the SiO₂ modified GCE electrode (blue curve) enhanced anodic current and the (Epa) peak potential of 0.527 V, there is no significant cathodic peak was observed. SiO₂ modified GCE was electrochemically oxidized and bismuth were released from Zn-Au@SiO₂. Au and Zn was deposited on the GCE at the reduction potential [36]. In contrast with the Au and Zn in Au/Zn@SiO₂modified electrode exhibited a couple of redox peaks, which can be clearly seen in Figure 2d. Interestingly, Zn-Au@SiO₂which was uniform in size (Figure 1a) uniformly distributed over the electrode surface. These resulted in an increase in the electrode surface area, indicating that the Zn-Au@SiO₂modified GCE had larger adsorption/desorption than the SiO₂modified electrode. These results indicated that the Zn-Au@SiO₂showed higher electrosensing activity than SiO₂.

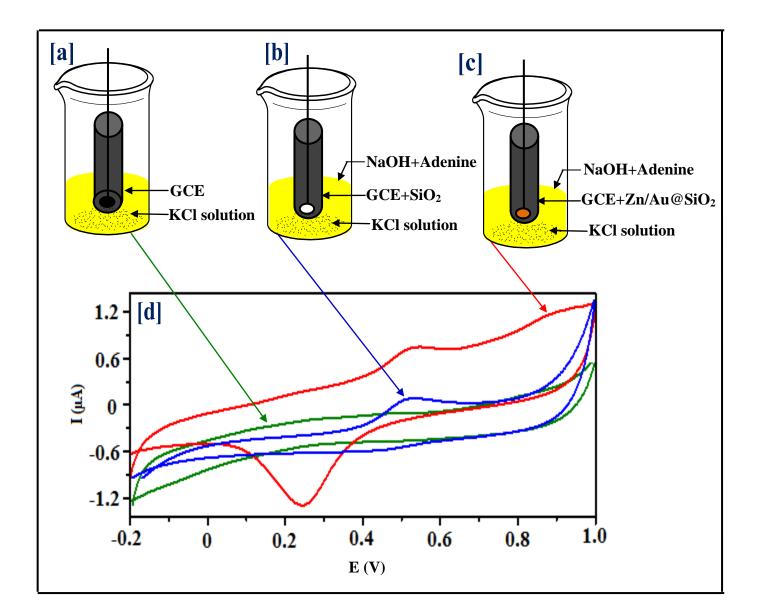


Figure 2. CVs of uncoated GCE with 0.2 M KCl solution (green curve), SiO_2 coated GCE in 0.2 M KCl with 0.002 M Adenine solution (blue curve) and Zn-Au@SiO₂coated GCE in 0.2 M KCl with 0.002 M Adenine solution (red curve).

CONCLUSIONS

Au/Zn@SiO₂was synthesized by simple sol-gel method. Au/Zn@SiO₂ was characterized by HR-SEM with EDX analysis. The HR-SEM showed the size as 30 nm. The spherical particles uniform in size uniformly distributed over the GCE surface and an increases the electrode surface area. Cyclic voltammogramic method showed that the modified Au/Zn@SiO₂/GCE had a higher electrochemical response than the SiO₂ modified electrode in the sensing of guanine. Good selectivity and high sensitivity of the Au/Zn@SiO₂as a promising candidate for electroanalytical and biomedical application for detecting the DNA bases.

Conflict of Interest

The authors declare no competing financial interest.

REFERENCES

 R.N. Goyal, V.K. Gupta, S. Chatterjee, A sensitive voltammetric sensor for determination of synthetic corticosteroid triamcinolone, abused for doping, Biosens. Bioelectron. 24 (2009) 3562-3568.

[2] A.A. Ensafi, S. Dadkhah-Tehrani, H. Karimi-Maleh, Voltammetric determination of glutathione in haemolysed erythrocyte and tablet samples using modifiedmultiwall carbon nanotubes paste electrode, Drug Test. Anal. 4 (2012) 978-985.

[3] V.K. Gupta, R. Sadeghi, F. Karimi, A novel electrochemical sensor based on ZnO nanoparticle and ionic liquid binder for square wave voltammetric determination of droxidopa in pharmaceutical and urine samples, Sens. Actuators B: Chem. 186 (2013) 603-609.

[4] H. Beitollahi, A. Mohadesi, S. Mohammadi, A. Pahlavan, H. Karimi-Maleh, A. Akbari, New voltammetric strategy for determination of dopamine in the presence of high concentrations of acetaminophen, folic acid and N-acetylcysteine, J. Mol. Liq. 169 (2012) 130-135.

[5] A. Qureshi, W.P. Kang, J.L. Davidson, Y. Gurbuz, Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications, Diamond Relat. Mater. 18 (2009) 1401-1420.

[6] W.R.T. Vandaveer, S.A. Pasas-Farmer, D.J. Fischer, C.N. Frankenfeld, S.M. Lunte, Recent developments in electrochemical detection for microchip capillary electrophoresis, Electrophor. 25 (2004) 3528-3549.

[7] L. Nyholm, Electrochemical techniques for lab-on-a-chip applications, Anal. 130 (2005) 599-605.

[8] Z. Zou, A. Jang, E. MacKnight, P. MingWu, J Do, P.L. Bishop, C.H. Ahn, Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement, Sens. Actuators B: Chem. 134 (2008) 18-24.

[9] J. Wang, Stripping Analysis at Bismuth Electrodes: A Review, Electroanal. 17 (2005) 1341-1346.

[10] V. Rehacek, I.Hotovy, M. Vojs, Sens. Bismuth-Coated Diamond-Like Carbon Microelectrodes for Heavy Metals Determination, Actuators B: Chem. 127 (2007) 193-197.

[11] Y. Li, K. Wu, I. Zhitomirsky, Electrodeposition of composite zinc oxide–chitosan films, Colloid. Surf. A: Physicochem. Eng. Aspects 356 (2010) 63-70.

[12] S.I. Na, S.S. Kim, W.K. Hong, J.W. Park, J. Jo, Y.C. Nah, T. Lee, D.Y. Kim, Fabrication of TiO2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells, Electrochim.

Acta. 53 (2008) 2560-2566.

[13] M.F. Hossain, T. Takahashi, S. Biswas, Nanorods and nanolipsticks structured ZnO photoelectrode for dye-sensitized solar cells, Electrochem. Commun. 11 (2009) 1756-1759.

[14] W. Sun, Z. Zhai, D. Wang, S. Liu, K. Jiao, Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode, Bioelectrochem. 74 (2009) 295-300.

[15] J. Liu, C. Guo, C.M. Li, Y. Li, Q. Chi, X. Huang, Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications, Electrochem. Commun. 11 (2009) 202-205.

[16] C. Xiang, Y. Zou, L.X. Sun, F. Xu, Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite, Sens. Actuators B: Chem. 136 (2009) 158-162.

[17] X. Liu, Q. Hu, Q. Wu,W. Zhang, Z. Fang, Q. Xie, Aligned ZnO nanorods: a useful film to fabricate amperometric glucose biosensor, Collod. Surf. B: Biointerfaces 74 (2009) 154-158.

[18] J. Zhao, J. Zhi, Y. Zhou, W. Yan, A tyrosinase biosensor based on ZnO nanorod clusters/nanocrystalline diamond electrodes for biosensing of phenolic compounds, Anal. Sci. 25 (2009) 1083-1088.

[19] S.A. Kumar, S.M. Chen, Nanostructured zinc oxide particles in chemically modified electrodes for biosensor applications, Anal. Lett. 41 (2008) 141–158.

[20] X. Cao, W. Ning, L.D. Li, Synthesis and characterization of waxberry-like microstructures ZnO for biosensors, Sens. Actuators B: Chem. 129 (2008) 268-273.

[21] F. Valentini, G. Palleschi, Nanomaterials and analytical chemistry, Anal. Lett. 4 (2008) 479-520.

[22] P.A. Prakash, U. Yogeswaran, S.M. Chen, A review on direct electrochemistry of catalase for electrochemical sensors, Sens. 9 (2009) 1821-1844.

[23] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, ZnO transparent thin films for gas sensor applications, Thin Solid Films 515 (2006) 551-554.

[24] A.A. Ensafi, H.K. Maleh, A voltammetric sensor based on modified multiwall carbon nanotubes for cysteamine determination in the presence of tryptophan using p-aminophenol as a mediator, Electroanal. 22 (2010) 2558-2568.

[25] M. Arshadi, M. Ghiaci, A.A. Ensafi, H. Karimi-Maleh, S.L. Suib, Oxidation of ethylbenzene using some recyclable cobalt nanocatalysts: the role of linker and electrochemical study, J. Mol. Catal. A: Chem. 338 (2011) 71-83.

[26] H. Karimi-Maleh, A.A. Ensafi, H. Beitollahi, V. Nasiri, M.A. Khalilzadeh, P. Biparva, Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: application for determination of sulfite in real samples, Ionics 18 (2012) 687-694.

[27] J. Wang, Electrochemical Nucleic Acid Biosensors, Anal. Chim. Acta 469 (2002) 63-71.

[28] C. Tang, U. Yogeswaran, S.M. Chen, Simultaneous determination of adenine guanine and thymine at multi-walled carbon nanotubes incorporated with poly(new fuchsin) composite film, Anal. Chim. Acta 636 (2009) 19-27.

[29] F. Xiao, F. Zhao, J. Li, L. Liu, B. Zeng, Characterization of hydrophobic ionic liquid-carbon nanotubes-gold nanoparticles composite film coated electrode and the simultaneous voltammetric determination of guanine and adenine, Electrochim. Acta 53 (2008) 7781-7788.

[30] M.M. Ardakani, Z. Taleat, H. Beitollahi, M. Salavati-Niasari, B.B.F. Mirjalili,N. Taghavinia, Electrocatalytic oxidation and nanomolar determination of

guanine at the surface of a molybdenum (VI) complex-TiO2 nanoparticle modified

carbon paste electrode, J. Electroanal. Chem. 624 (2008) 73-78.

[31] A. Abbaspour, A. Ghaffarinejad, Preparation of a sol–gel-derived carbon nanotube ceramic electrode by microwave irradiation and its application for the determination of adenine and guanine, Electrochim. Acta 55 (2010) 1090-1096.

[32] W. Sun, Y. Li, Y. Duan, K. Jiao, Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination, Biosens. Bioelectron. 24 (2008) 988-993.

[33] K.J. Huang, D.J. Niu, J.Y. Sun, C.H. Han, Z.W.Wu, Y.L. Li, X.Q. Xiong, Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA, Colloids Surf., B 82 (2011) 543-549.

[34] K.Y. Kim, Nanomedicine: nanotechnology, Biol. Med. 3 (2007) 103-110.

[35] C. Chen, B. Yu, J. Liu, Q. Dai, Y. Zhu, Investigation of ZnO films on Si(111) substrate grown by low energy O⁺ assisted pulse laser deposited technology, Mater. Lett. 61 (2007) 2961-2964.

[36] G.H. Hwang,W.K. Han, S.J. Hong, J.S. Park, S.G. Kang, Determination of trace amounts of lead and cadmium using a bismuth/glassy carbon composite electrode, Talanta 77 (2009) 1432-1436.